Что такое энергия гиббса. Энергия гиббса реакции

31.08.2019 Обувь

Стандартная энергия Гиббса реакции равна сумме стандартных энергий Гиббса продуктов реакций за вычетом суммы стандартных энергий Гиббса исходных веществ с учетом стехиометрических коэффициентов уравнения реакции.

где - стандартная энергия Гиббса реакции,

- сумма стандартных энергий Гиббса продуктов реакции,

- сумма стандартных энергий Гиббса исходныхвеществ,

n, n / - стехиометрические коэффициенты исходных веществ и конечных продуктов в уравнении реакции.

Стандартные значения энергии Гиббса для 1 моля вещества при Т = 298 К приведены в справочнике /5, табл.44; 6, табл.1/.

Решение :

1)Расчет энергии Гиббса.

Находим в справочнике /5, табл.44/ значения стандартных энергий Гиббса для веществ реакции:

а) продукты реакции

,

б) исходные вещества

,

.

Применяя уравнение (63), получим:

Вывод . Полученное значение энергии Гиббса () указывает на то, что данная реакция в закрытой системе может протекать в стандартных условиях в прямом направлении.

2) Расчет энергии Гельмгольца.

Для расчета изохорно-изотермического потенциала рассмотрим соотношение между энергией Гиббса и энергией Гельмгольца:

, , но .

т.е. .

Если в реакции принимают участие только конденсированные фазы (твердые и жидкие вещества), то изменение объема DV равно нулю.

Если в реакции участвуют газообразные продукты, то изменением объема пренебрегать нельзя.

Рассмотрим простейший случай, когда газы, участвующие в реакции, подчиняются законам идеального газа. Тогда согласно уравнению Клапейрона-Менделеева можно записать PDV=DnRT .

Dn=n кон - n исх,

где n кон - число молей газообразных конечных продуктов;

n исх – число молей газообразных исходных веществ.

В нашем примере газообразный продукт один – углекислый газ, поэтому Dn = 0 - 1= - 1.

Вывод . Так как полученное в результате расчета значение DF <0, то в изохорно-изотермическом процессе в закрытой системе будет протекать самопроизвольный процесс.

· Для нахождения энергии Гиббса можно применять уравнение (56), которое дает возможность производить расчет как в стандартных условиях, так и при любой другой температуре.

Пример 2 . Вычислить энергию Гиббса и Гельмгольца при Т 1 = 298 К и Т 2 = 473 К, при постоянном давлении 1,013×10 5 Па для реакции:

Как скажется повышение температуры на направления протекания данной реакции?

Решение . Для расчета DG реакции воспользуемся уравнением (56):

,

где DH и DS - соответственно изменение энтальпии и энтропии реакции при заданной температуре:

а) Т =298 К.

Определяем изменение стандартной энтальпии реакции D r H 0 (298) (расчет приведен в примере 1 раздела 1.3.3): D r H 0 (298) = -170,42 кДж.

D r S 0 (298)(расчет приведен в примере 1 раздела 1.5.4): D r S 0 (298) = -133,77 Дж.

Вывод . Расчет стандартной энергии Гиббса по справочным данным, приведенный в предыдущем примере, и расчет по уравнению (56), приведенный в данном примере, практически совпадают. Относительная ошибка составляет:

Расчет DF (298)см. в этом же разделе, пример 1.

б) Т = 473 К.

Определяем изменение энтальпии реакции D r H (473) (расчет приведен в примере 2 раздела 1.4.2):

D r H (473) = -125,79 кДж.

Определяем изменение энтропии реакции D r S (473) (расчет приведен в примере 1 раздела 1.5.4):

D r S (473) = -12,9 Дж.

Подставим полученные данные в уравнение (56):

Расчет DF проводим согласно уравнению (64):

Вывод . Ответ на последний вопрос задачи определяется знаком D r S и D r H (см. табл. 1). В нашем случае , т.е. в уравнении член (- TDS) для нашей реакции положителен. Следовательно, с повышением температуры Т в изобарно-изотермическом процессе значение D r G будет возрастать (т.е. становиться менее отрицательным). Это означает, что повышение температуры будет препятствовать протеканию рассматриваемой реакции в прямом направлении.

В изохорно-изотермическом процессе будут наблюдаться аналогичные тенденции для энергии Гельмгольца.

.

Преобразуем данное уравнение и проинтегрируем:

.

Если Т 1 = 298 К, то уравнение примет вид:

или (65)

В зависимости от степени точности возможны три варианта расчета энергии Гиббса по этому способу.

Первый вариант . Предположим, что энтропия реакции не зависит от температуры, т.е. D r S 0 (298) = D r S (Т 2), тогда:

Полученный результат расчета дает существенную погрешность.

Пример 3 . Вычислить энергию Гиббса предложенным способом для реакции:

При Т 2 = 473 К, при постоянном давлении 1,013×10 5 Па.

Решение.

Стандартную энергию Гиббса находим по уравнению (63) (см. пример 1 в разделе 1.5.8.): D r G 0 (298) = -130,48 кДж.

Определяем изменение стандартной энтропии реакции D r S 0 (298) (расчет приведен в примере 1 раздела 1.5.4): D r S 0 (298) = -133,77 Дж.

Подставим полученные данные в уравнение (66) и произведем расчет:

Вывод . Результат расчета отличается от результата в примере 2,б раздела 1.5.8, т.к. последний вариант является приближенным, не учитывается фазовый переход воды.

Второй вариант. Предположим, что энтропия реакции зависит от температуры

или .

Если теплоемкость не зависит от температуры D r С Р = const , то после интегрирования имеем:

Подставим полученное значение D r S (Т )в (65):

После интегрирования получим:

учитывая зависимость энтропии реакции от температуры.

Решение.

Определяем D r С Р реакции по первому следствию закона Гесса:

Воспользуемся значениями стандартных изобарных теплоемкостей для индивидуальных веществ, приведенных в справочнике /5, табл. 44/:

а) продукты реакции:

б) исходные вещества:

,

.

Расчет стандартной энергии Гиббса для данной реакции приведен в примере 1 раздела 1.5.8. D r G 0 (298) = -130,48 кДж.

Расчет стандартной энтропии для данной реакции приведен в примере 1 раздела 1.5.4. D r S 0 (298) = -133,77 Дж.

Подставляя полученные значения в (67), получим:

Вывод: данный расчет также является приближенным, т.е. он не учитывает зависимость теплоемкости от температуры, но более точным, чем первый способ, рассмотренный выше.

Пример, рассматриваемый нами, является более сложным, т.к. в предложенном интервале температур у одного из веществ, а именно у воды, существует фазовый переход, что необходимо учитывать. Это усложняет расчет и делает его громоздким.

В таких случаях вычислить энергию Гиббса можно, воспользовавшись формулой (56). Расчет этот приведен в примере 2 раздела 1.5.8.

На практике часто для расчета энергии Гиббса используют метод Темкина - Шварцмана (1946 г.), позволяющий стандартную энергию Гиббса при 298 К пересчитать для любой температуры /1, 4, 7, 8/.

Пример 5. Вычислить изменение энергии Гиббса при изотермическом сжатии 0,005 м 3 кислорода от Р 1 =0,1013×10 5 Па до Р 2 =1,013×10 5 Па (Т = 0 0 С ), считая кислород идеальным газом.

Решение. Из уравнение Менделеева-Клапейрона находим число молей кислорода, участвующих в реакции:

Для определения DG воспользуемся формулой (58):

.

Т.к. процесс протекает при Т= const, то второе слагаемое будет равно нулю. Расчет проводим по формуле dG = VdP.

Из уравнения Менделеева-Клапейрона выразим V:

Подставляем:

Интегрируем и подставляем данные задачи:

Вывод. При изотермическом сжатии кислорода процесс не может протекать самопроизвольно.

Пример 6. Теплота плавления льда при 0 0 С равна 335 Дж/г. Удельная теплоемкость воды равна . Удельная теплоемкость льда равна . Найти DG, DH, DS для процесса превращения 1 моль переохлажденной воды при – 5 0 С в лед.

Решение. Переохлажденная жидкость не находится в состоянии равновесия с твердой фазой. Рассматриваемый процесс не является статическим, поэтому вычислить энтальпию и энтропию по теплоте кристаллизации для переохлажденной жидкости нельзя.

Для вычисления данных функций мысленно заменим нестатический процесс тремя квазистатическими, в результате которых система придет из начального состояния в конечное.

1-й процесс. Нагревание обратимым путем 1 моль воды до температуры замерзания. При этом изменение энтальпии и энтропии согласно уравнениям (26) и (36):

,

где С Р – молярная теплоемкость воды,

Подставляя в формулы данные задачи, получим:

2-й процесс. Кристаллизация воды при 0 0 С (273 К). В условиях задачи дана удельная теплота плавления ( пл.), т.е. теплота фазового перехода 1 г воды из твердого состояния в жидкое.

Т.к. ,

то ,

где DН 2 – теплота кристаллизации 1 моля воды,

пл. уд – удельная теплота плавления, приведенная в задаче,

М – молярная масса воды.

Тогда .

Энтропия фазового перехода рассчитывается по формуле (47):

.

Подставим данные и получим:

3-й процесс. Обратимое охлаждение льда от 273 до 268 К. Расчет энтальпии и энтропии проводим аналогично первому процессу.

, ,

где С Р – молярная теплоемкость льда,

Подставляя данные, получим:

Общее изменение энтальпии и энтропии в изобарном процессе

Изменение энергии Гиббса в рассматриваемом процессе рассчитывается по формуле (56).

Вывод. По результатам расчета видно, что при превращении 1 моль переохлажденной воды в ледэнтальпия и энтропия в системе убывает. Это значит, что самопроизвольный процесс в таком случае возможен только при низких температурах, когда энергия Гиббса DG приобретает отрицательные значения (см. табл.2), что мы и наблюдаем в нашем примере.

Вопросы для самопроверки:

1. Дайте определение самопроизвольных процессов.

2. Какие процессы называют равновесными?

3. Основные формулировки второго начала термодинамики. Его математического выражение.

4. Каковы возможности второго начала термодинамики?

5. Выведите формулу объединенного закона термодинамики.

6. Каков физический смысл заложен в понятие энтропия?

7. Как изменяется энтропия в равновесных процессах?

8. Как изменяется энтропия в самопроизвольных процессах?

9. В каких системах изменение энтропии может служить мерой направленности физико – химических процессов?

10. В каком соотношении находятся молярные энтропии трех агрегатных состояний одного вещества: газа, жидкости, твердого тела?

11. В изолированной системе самопроизвольно протекает химическая реакция с образованием некоторого количества конечного продукта. Как изменяется энтропия системы?

12. В каких условиях можно использовать энтропию, как функцию, определяющую направление процесса?

13. Какова зависимость энтропии реакции от условий протекания процесса (влияние температуры, давления, объема)?

14. Как рассчитывается энтропия реакции?

15. Зачем были введены термодинамические потенциалы?

16. Каков физический смысл энергии Гиббса, энергии Гельмгольца?

17. В каких системах изменение изобарно – изотермического потенциала может служить мерой направленности физико – химических процессов?

18. В каких системах изменение изохорно – изотермического потенциала может служить мерой направленности физико – химических процессов?

19. За счет чего совершается максимально полезная работа химической реакции при постоянном давлении и температуре

20. В каких реакциях энергия Гиббса и энергия Гельмгольца приобретают одинаковые значения?

21. Как зависит от температуры изменение энергии Гиббса химической реакции?

22. Процесс протекает в условиях постоянства температуры и давления в закрытых системах. Какой термодинамический потенциал следует выбрать в качестве критерия протекания самопроизвольного процесса в этих условиях?

23. Как изменяется энергия Гиббса, если в закрытой системе протекает реакция слева направо при постоянном давлении и температуре?

24. Как изменится энергия Гиббса, если в закрытой системе при постоянном давлении и температуре реакция протекает справа налево?

25. Жидкость превращается в пар при определенной температуре и давлении. Каково соотношение между DG и DF этого процесса?

26. За счет чего совершается максимальная полезная работа химической реакции при постоянном объеме и температуре?

27. Какой термодинамический потенциал следует выбрать в качестве критерия направления реакции, если она протекает в закрытом автоклаве при постоянной температуре? Каково условие самопроизвольного течения процесса, выраженное при помощи этого потенциала?

28. Как энергия Гельмгольца (изохорно – изотермический потенциал) системы зависит от объема при постоянной температуре (если единственный вид работы – работа расширения)? Напишите математическое выражение зависимости.

29. При каких постоянных термодинамических параметрах изменение энтальпии DН может служить критерием направления самопроизвольного процесса? Какой знак DН в этих условиях указывает на самопроизвольный процесс?

30. Равновесная система состоит из трех частей, каждая из которых обладает определенной энтропией: S 1 , S 2 , S 3 . Как можно выразить энтропию системы в целом?

31. Как изменяется энергия Гельмгольца (изохорно – изотермический потенциал) при изотермическом сжатии газа в идеальном состоянии?


Третий закон термодинамики

Анализируя изменения тепловых эффектов и изотермических потенциалов в области низких температур, Нернст в 1906 году высказал предположение, что при приближении к абсолютному нулю значения тепловых эффектов и изотермического потенциала сближаются, и кривые DH = f(T) и DG = f(T) при Т = 0 касаются друг друга и имеют общую касательную (рис.3). Постулат Нернста (тепловая теорема Нернста) справедлив лишь для систем, состоящих из кристаллических веществ.

В математической форме это утверждение выражаетсятак: вблизи абсолютного нуля в реакциях, протекающих в конденсированных системах при Т = 0 ,

и . (69)

Уравнения (69) и (70) являются математическим выражением третьего закона термодинамики.

В соответствии с уравнением (60) из уравнения Нернста следует, что вблизи абсолютного нуля реакции в конденсированных системах не сопровождаются изменением энтропии, т.е. для них DS = 0.

Рис. 3. Относительное положение

кривых DH=f(T) и DG=f(T ) в области

низких температур

Планк в 1912 году предположил, что энтропия правильно сформированного кристалла любого чистого вещества при абсолютном нуле равна нулю (постулат Планка).

Правильно сформированный кристалл - это кристалл с идеальной кристаллической решеткой. Математическое выражение постулата Планка:

Такая зависимость отсутствует в твердых растворах и стеклообразных веществах.

И постулат Планка, и теорема Нернста – оба этих утверждения и являются третьим законом термодинамики, который получил широкое применение для определения абсолютных значений энтропий чистых веществ:

Из приведенного уравнения (71) следует, что в области температур, близких к нулю, теплоемкость веществ тоже стремится к нулю:

Это утверждение основывается на результатах многочисленных измерений теплоемкостей различных веществ при низких температурах.

При дальнейшем развитии термодинамики выяснился условный характер постулата Планка. Было найдено, что при абсолютном нуле некоторые составляющие энтропии, связанные со спинами ядер и изотопным эффектом, не становятся равными нулю. При обычных химических реакциях эти составляющие не меняются, поэтому их практически можно не учитывать. Для таких реакций выводы постулата Планка не нуждаются в уточнении. Однако сам постулат приобретает характер условного допущения.


Варианты заданий для расчетных работ

Определить DH, DU, DS, DF, DG реакций при постоянном давлении

Р = 1,013 10 5 Па и заданной температуре.

№ п/п Уравнение реакции T , K
Fe 2 O 3(т) + 3CO (г) = 2Fe (т) + 3CO 2(г)
CaO (т) + CO 2(г) = CaCO 3(т)
Fe 2 O 3(т) + 3C (т) = 2Fe (т) + 3CO (г)
Al 2 O 3(т) + 3SO 3(г) = Al 2 (SO 4) 3(т)
2Fe 2 O 3(т) + 3C (т) = 4Fe (т) + 3CO (г)
Na 2 CO 3(т) + H 2 SO 4(ж) = Na 2 SO 4(т) + H 2 O (ж) + CO 2(г)
SO 3(г) + H 2 O (ж) = H 2 SO 4(ж)
Na 2 CO 3(т) + Ca(OH) 2(т) = CaCO 3(т) +2NaOH (т)
CaCO 3(т) = CaO (т) + CO 2(г)
2K + H 2 SO 4(ж) = K 2 SO 4(т) + H 2(г)
Ba(OH) 2(т) + 2HNO 3(г) = Ba(NO 3) 2(т) + H 2 O (ж)
2FeS (т) + 3,5O 2(г) = Fe 2 O 3(т) + 2SO 2(г)
4HCl (г) + O 2(г) = 2H 2 O (ж) + 2Cl 2(г)
NH 4 Cl (т) = NH 3(г) + HCl (г)
2N 2(г) + 6H 2 O (г) = 4NH 3(г) + 3O 2(г)
2H 2(г) + CO (г) = CH 4 O (г) (метанол)
0,5S 2(г) + 2H 2 O (ж) = SO 2(г) + 2H 2(г)
0,5S 2 (г) + 2CO 2(г) = SO 2(г) + 2CO (г)
SO 2(г) + Cl 2(г) = SO 2 Cl 2(г)
4NO (г) + 6H 2 O (г) = 4NH 3(г) + 5O 2(г)
2H 3 PO 4(ж) + Ca(OH) 2(т) = Ca(H 2 PO 4) 2 + 2H 2 O (ж)
2KOH (т) + H 2 SO 4(ж) = K 2 SO 4(т) + H 2 O (г)
SO 2(г) + 2CO (г) = S (ромб) + 2CO 2(г)
K 2 CO 3(т) + 2HNO 3(ж) = 2KNO 3(т) + H 2 O (ж) + CO 2(г)
NaI (т) + HCl (г) = NaCl (т) + HI (г)
Ca(OH) 2(т) + 2HCl (г) = CaCl 2(т) + 2H 2 O (ж)
Ba(OH) 2(т) + H 2 SO 4(ж) = BaSO 4(т) + 2H 2 O (ж)
BeO (т) + H 2 SO 4(ж) = BeSO 4(т) + H 2 O (ж)
Al 2 O 3(т) + 6HCl (г) = 2AlCl 3(т) + 3H 2 O (г)
CuO (т) + H 2 S (г) = CuS (т) +H 2 O (г)
CuO (т) + 2HCl (г) = CuCl 2(т) + H 2 O (ж)
2CO (г) + 3H 2(г) = H 2 O (ж) + C 2 H 4 O (г) (ацетальдегид)
Ag 2 O (т) + 2HNO 3(ж) = 2AgNO 3(т) + 2H 2 O (ж)
CO 2(г) + 2NH 3(г) = H 2 O (ж) + CH 4 N 2 O (т) (карбамид)
NaNO 3(т) + KCl (т) = NaCl (т) + KNO 3(т)
4NH 3(г) + 4NO 2(г) + 2H 2 O (ж) + O 2(г) = 4NH 4 NO 3(т)
(NH 4) 2 SO 4(т) + Ba(NO 3) 2 = BaSO 4(т) + 2NH 4 NO 3(т)
(NH 4) 2 SO 4(т) + CaCl 2(т) = CaSO 4(т) + 2NH 4 Cl (т)

Окончание

№ п/п Уравнение реакции T , K
C 2 H 2(г) + H 2 O (ж) = C 2 H 4 O (г) (ацетальдегид)
CH 4(г) + HNO 3(ж) = H 2 O (ж) + CH 3 NO 2(г) (нитрометан)
8Al (т) + 3Fe 3 O 4(т) = 9Fe (т) + 4Al 2 O 3(т)
2NH 4 NO 3(т) = 4H 2 O (ж) + O 2(г) + 2N 2(г)
C 2 H 2(г) + 2H 2 O (ж) = CH 3 COOH (ж) + H 2(г)
CH 4(г) + 2H 2 S (г) = CS 2(г) + 4H 2(г)
H 2 S (г) + CO 2(г) = H 2 O (г) + COS (г)
2NaHCO 3(т) = Na 2 CO 3(т) + H 2 O (г) + CO 2(г)
Zn(OH) 2(т) + CO 2(г) = ZnCO 3(т) + H 2 O (ж)
ZnS (т) + H 2 SO 4(ж) = ZnSO 4(т) + H 2 S (г)
2AgNO 3(т) = 2Ag (т) + O 2(г) +2NO 2(г)
2KMnO 4(т) + 3H 2 O 2(г) = 2MnO 2(т) + 2KOH (т) + 3O 2(г) + 2H 2 O (ж)
KClO 3(т) + H 2 O 2(г) = KCl (т) + 2O 2(г) + H 2 O (ж)
3Cl 2(г) + 6KOH (т) = KClO 3(т) + 3H 2 O (ж) + 5KCl (т)
4Cl 2(г) + H 2 S (г) + 4H 2 O (ж) = 8HCl (г) + H 2 SO 4(ж)
2KOH (т) + MnO (т) + Cl 2(г) = MnO 2 + 2KCl (т) + H 2 O (ж)
P (т) + 5HNO 3(ж) = H 3 PO 4(ж) + 5NO 2(г) + H 2 O (ж)
Cu (т) + 2H 2 SO 4(ж) = CuSO 4(т) + SO 2(г) + 2H 2 O (ж)
PbS (т) + 4H 2 O 2(г) = PbSO 4(т) + 4H 2 O (ж)
8HJ (г) + H 2 SO 4(ж) = 4J 2 + H 2 S (г) + 4H 2 O (ж)
Ca(OH) 2(т) + H 2 S (г) = CaS (т) + 2H 2 O (ж)
P 2 O 5(т) + 3H 2 O (ж) = 2H 3 PO 4(ж)

ЛАБОРАТОРНЫЙ ПРАКТИКУМ

Одной из важнейших задач, решаемых термодинамикой, является установление принципиальной возможности (или невозможности) самопроизвольного протекания химического процесса.

Как указывалось ранее, протеканию химического процесса благоприятствует повышение энтропии системы. Повышение энтропии достигается разобщением частиц, разрывом химических связей, разрушением кристаллических решеток, растворением веществ и т.д. Однако все эти процессы неизбежно сопровождаются повышением энтальпии системы, что препятствует протеканию процесса. Очевидно, что для решения вопроса о принципиальной возможности протекания химического процесса необходимо одновременно учесть изменение и энтропии, и энтальпии системы. При постоянной температуре и давлении для этой цели используется термодинамическая функция, называемая свободной энергией Гиббса (иногда просто энергией Гиббса). Свободная энергия Гиббса (G) cвязана с энтальпией и энтропией следующим уравнением:

Изменение энергии Гиббса при переходе системы из начального состояния в конечное определяется соотношением:

ΔG = ΔH - TΔS

Поскольку уравнение справедливо для процессов, протекающих при постоянных температуре и давлении, функцию G называют изобарно-изотермическим потенциалом . В полученном уравнении величина ΔН оценивает влияние энтальпийного фактора, а величина ТΔS - энтропийного фактора на возможность протекания процесса. По своему физическому смыслу свободная энергия Гиббса - это та часть ΔН, которая при определенных условиях может быть превращена в работу, совершаемую системой против внешних сил. Остальная часть ΔН, равная ТΔS, представляет "несвободную" энергию, которая идет на повышение энтропии системы и в работу превращена быть не может. Свободная энергия Гиббса - это своеобразный потенциал, определяющий движущую силу химического процесса. Подобно физическим потенциалам (электрическому, гравитационному) энергия Гиббса уменьшается по мере самопроизвольного протекания процесса до тех пор, пока не достигнет минимального значения, после чего процесс прекратится.

Пусть в системе при постоянных давлении и температуре cамопроизвольно протекает какая-то реакция (неравновесный процесс). В этом случае ΔH < TΔS, соответственно ΔG <0. Таким образом, изменение функции Гиббса может служить критерием при определении направления протекания реакций: в изолированной или закрытой системе при постоянной температуре и давлении самопроизвольно протекают реакции, для которых изменение свободной энергии Гиббса отрицательно (ΔG < 0).



Пусть протекающая в системе реакция обратима. Тогда при заданных условиях прямая реакция принципиально осуществима, если ΔG < 0, а обратная - если ΔG > 0; при ΔG = 0 система будет находиться в состоянии равновесия. Для изолированных систем ΔН = 0, поэтому ΔG = - TΔS. Таким образом, в изолированной системе самопроизвольно протекают процессы, приводящие к повышению энтропии (второй закон термодинамики).

Поскольку в уравнение энергии Гиббса входит энтальпия системы, определить ее абсолютное значение невозможно. Для расчета изменения свободной энергии, отвечающего протеканию той или иной реакции, используют энергии Гиббса образования соединений, участвующих во взаимодействии. Энергия Гиббса образования соединения (ΔG f) - это изменение свободной энергии, соответствующее синтезу моля данного соединения из простых веществ. Энергии Гиббса образования соединений, отнесенные к стандартным условиям, называются стандартными и обозначаются символом . Значения приведены в справочной литературе; их можно также вычислить по значениям энтальпий образования и энтропий соответствующих веществ.

Пример №1. Требуется рассчитать для Fe 3 O 4 , если известна энтальпия образования этого соединения ΔН о f (Fe 3 O 4) = -1117,13 кДж/моль и энтропии железа, кислорода и Fe 3 O 4 , равные 27,15; 205,04 и 146,19 Дж/моль. К. Соответственно

(Fe 3 O 4) = (Fe 3 O 4) - T· ,

где Δ - изменение энтропии при протекании реакции: 3Fe + 2O 2 = Fe 3 O 4

Изменение энтропии рассчитывается по следующему уравнению:

Δ = (Fe 3 O 4) - =

146,19 - (3 . 27,15 + 2 . 205,04) = -345,3(Дж/моль . К);

Δ = -0,34534 кДж/моль·К

(Fe 3 O 4) = -1117,13 - 298(-0,34534) = -1014,2 (кДж/моль)

Полученный результат позволяет сделать вывод, что реакция принципиально возможна при стандартных условиях. В данном случае энтальпийный фактор благоприятствует протеканию реакции ( < 0), а энтропийный - препятствует (Т < 0), но не может увеличить до положительной величины



Поскольку G является функцией состояния, то для реакции: aA + bB = dD + eE изменение энергии Гиббса можно определить по уравнению

= Σi (пр) - Σj (реаг)

Пример №2. Оценим принципиальную возможность получения озона при взаимодействии азотной кислоты с кислородом (условия стандартные) по уравнению:

4HNO 3 (ж) + 5O 2 (г) = 4O 3 (г) + 4NO 2 (г) + 2H 2 O(ж)

Рассчитаем изменение энергии Гиббса в стандартных условиях:

= - =

4·162,78 + 4·52,29 - = 1179,82 (кДж)

Самопроизвольное протекание реакции при стандартных условиях принципиально невозможно. В то же время диоксид азота может быть окислен озоном до азотной кислоты, так как для обратной реакции значение ΔG отрицательно.

ХИМИЧЕСКАЯ КИНЕТИКА

Все химические реакции обычно сопровождаются изменением как энтропии, так и энтальпии. Связь между энтальпией и энтропией системы устанавливает термодинамическая функция состояния, которая называется свободной энергией Гиббса или изобарно-изотермическим потенциалом (G). Она характеризует направление и предел самопроизвольного протекания процессов в изобарно-изотермических условиях (р = const и Т = const). С энтальпией и энтропией системы свободная энергия Гиббсасвязана соотношением

G = H – TS. (9)

Абсолютное значение измерить невозможно, поэтому используется изменение функции в процессе протекания того или иного процесса:

DG = DH – TDS. (10)

Свободная энергия Гиббса измеряется в кДж/моль и кДж. Физический смысл свободной энергии Гиббса: свободная энергия системы, которая может быть превращена в работу. Для простых веществ свободная энергия Гиббса принимается равной нулю.

Знак изменения свободной энергии Гиббса DG и ее величина при Р = const определяют термодинамическую устойчивость системы:

· если в химическом процессе происходит снижение свободной энергии Гиббса, т.е. DG < 0, процесс может протекать самопроизвольно, или говорят: процесс термодинамически возможен;

· если продукты реакции имеют больший термодинамический потенциал, чем исходные вещества, т.е. DG >

· если DG = 0, то реакция может протекать как в прямом, так и в обратном направлении, т.е. реакция обратима.

Следовательно, самопроизвольные процессы при Р=const идут с уменьшением свободной энергии Гиббса. Этот вывод справедлив как для изолированных, так и для открытых систем.

Изменение энергии Гиббса системы при образовании 1 моль вещества из простых веществ, устойчивых в данных условиях, называется энергией Гиббса образования вещества DG обр. , измеряется в кДж/моль.

Если вещество находится в стандартных условиях, то энергия Гиббса образования называется стандартной энергией Гиббса образования вещества (DG 0 обр.298). Стандартная энергия Гиббса образования простого вещества, устойчивого в стандартных условиях, равна нулю. Значения DG 0 обр.298 веществ приводятся в справочниках.



Изменение энергии Гиббса, как и изменение энтальпии и энтропии, не зависит от пути процесса, поэтому изменение энергииГиббса химической реакции DG равно разности между суммой энергий Гиббса образования продуктов реакции и суммой энергий Гиббса образования исходных веществ с учетом стехиометрических коэффициентов:

DG 0 298 = S(n i . DG i 0 298) пр. - S(n i . D G i 0 298) исх. . (11)

Свободная энергия Гельмгольца

Направление протекания изохорных процессов (V = const и Т = const) определяется изменением свободной энергии Гельмгольца, которую называют также изохорно-изотермический потенциал (F):

DF = DU – TDS.

Знак изменения свободной энергии Гельмгольца DF и ее величина при V = const определяют термодинамическую устойчивость системы:

· если в химическом процессе происходит снижение свободной энергии Гельмгольца, т.е. D F < 0, процесс может протекать самопроизвольно, или говорят: процесс термодинамически возможен;

· если продукты реакции имеют больший термодинамический потенциал, чем исходные вещества, т.е. D F > 0, процесс протекать самопроизвольно не может, или говорят: процесс термодинамически невозможен;

· если D F = 0, то реакция может протекать как в прямом, так и в обратном направлении, т.е. реакция обратима.

Следовательно, самопроизвольные процессы при V=const идут с уменьшением свободной энергии Гельмгольца. Этот вывод справедлив как для изолированных, так и для открытых систем.


ХИМИЧЕСКАЯ КИНЕТИКА

Основные понятия химической кинетики

Химическая кинетика – раздел химии, изучающий скорости и механизмы химических реакций.

Различают гомогенные и гетерогенные химические реакции:

· гомогенные реакции протекают в однородной среде во всем объеме системы (это реакции в растворах, в газовой фазе);

· гетерогенные реакции протекают в неоднородной среде, на границе раздела фаз (горение твердого или жидкого вещества).

Основным понятием химической кинетики является понятие о скорости химической реакции. Под скоростью химической реакции понимается число элементарных актов взаимодействия в единицу времени в единице объема (если реакция гомогенная) или число элементарных актов взаимодействия в единицу времени на единицу поверхности раздела фаз (если реакция гетерогенная).

Скорость реакции характеризуют изменением концентрации какого-либо из исходных веществ или конечных продуктов реакции в единицу времени и выражают: для гомогенных реакций – моль/л·с (моль/м 3 ·с и т.д.), для гетерогенных – моль/см 2 ·с (моль/м 2 ·с).



Различают среднюю и истинную (мгновенную) скорость реакции. Из зависимостей, представленных на рис. 6.1, следует: при химическом взаимодействии концентрация каждого из исходных веществ (кривая 1) уменьшается во времени (С 2 <С 1 , DС<0), а концентрация каждого из продуктов реакции (кривая 2) возрастает (С` 2 >С` 1 , DС>0). Следовательно, среднюю скорость (V ср) в интервале времени t 1 ÷ t 2 можно выразить следующим образом:

V ср =± (С 2 – С 1)/(t 2 - t 1) = ± DС/Dt. (1)

Средняя скорость является грубым приближением, т.к. в интервале времени t 1 ÷ t 2 она не остается постоянной. Истинная или мгновенная скорость в момент времени t (V) определяется следующим образом:

V = lim (± DС/D t) = ± dС/dt = ± С" t = tg a, (2)

т.е. мгновенная скорость химической реакции равна первой производной от концентрации одного из веществ по времени и определяется как tg угла наклона касательной к кривой С А = f (t) в точке, соответствующей данному моменту времени t: dС/dt = tga.

Скорость химической реакции зависит от различных факторов:

Природы реагирующих веществ;

Их концентрации;

Температуры протекания процесса;

Присутствия катализатора.

Рассмотрим более подробно влияние каждого из перечисленных факторов на скорость химической реакции.

При решении задач этого раздела см. табл. 5-7.

Направление, в котором самопроизвольно могут протекать реакции, определяется совместным действием двух тенденций:

    стремлением системы к переходу в состояние с наименьшей энергией;

    стремлением к наиболее вероятному состоянию.

Первая тенденция характеризуется величиной ∆Н, т.е. самопроизвольно протекают реакции, сопровождающиеся уменьшением энтальпии (∆Н < 0). Действительно, все экзотермические реакции протекают самопроизвольно.

Однако известно достаточно большое число самопроизвольных эндотермических реакций, протекание которых противоречит энергетическому принципу, и может быть обусловлено только стремлением к системы к наиболее вероятному состоянию. В термодинамике доказывается, что наиболее вероятным является наиболее неупорядоченное состояние, связанное с хаотичным движением частиц (молекул, ионов, атомов). Мерой наиболее вероятного (неупорядоченного) состояния системы является термодинамическая функция состояния энтропия S. В изолированных системах процессы протекают самопроизвольно в сторону увеличения энтропии.

Таким образом, с одной стороны, система стремится к уменьшению энтальпии, т.е. к упорядочению, с другой стороны, система стремится к росту энтропии, к беспорядку.

Энтропия возрастает при переходе вещества из кристаллического состояния в жидкое и из жидкого в газообразное; при растворении веществ; при химических реакциях, приводящих к увеличению числа частиц, особенно в газообразном состоянии. Поскольку энтропия является функцией состояния, ее изменение (S) зависит только от начального (S 1) и конечного (S 2) состояний и не зависит от пути процесса:

Если S 2 >S 1 , то S > 0. Если S 2

Для химической реакции: S хр = S 0 прод - S 0 исх.

Энтропия выражается в Дж/(моль. К).

Очевидно, что, характеризуя две противоположные тенденции процесса, энтальпия или энтропия, взятые по отдельности, не могут служить критерием его самопроизвольного протекания. Функцией состояния, учитывающей обе тенденции, является энергия Гиббса G :

G = H T S (1)

или ∆H = ∆G + T ∆S. (2)

Из уравнения (2) следует, что энтальпия химической реакции состоит из двух слагаемых. Первое - ∆G представляет собой ту часть энергии, которая может быть превращена в работу. Поэтому энергию Гиббса иногда называют свободной энергией.

Второе слагаемое – это та часть энергии, которую невозможно превратить в работу. Произведение T·∆S называют рассеянной или связанной энергией, она рассеивается в окружающую среду в виде теплоты.

Энергия Гиббса при постоянном давлении и температуре служит критерием самопроизвольного протекания любого процесса, в том числе и химической реакции. Самопроизвольно протекающие процессы идут в сторону уменьшения потенциала и, в частности, в сторону уменьшения G. Если G < 0, процесс принципиально осуществим; если G > О, процесс самопроизвольно проходить не может. Чем меньше G, тем сильнее стремление к протеканию данного процесса и тем дальше он от состояния равновесия, при котором G = 0 и H= T·S.

Химическая реакция принципиально возможна, если энергия Гиббса уменьшается G <0 . Если ∆G>0, реакция не может протекать самопроизвольно в прямом направлении. Это неравенство свидетельствует о термодинамической возможности самопроизвольного протекания обратной реакции.

Из соотношения (1) видно, что самопроизвольно могут протекать и процессы, для которых H>0 (эндотермические). Это возможно, когда ΔS > 0, но│∆H <T∆S│, например, при высоких температурах, и тогда G < 0.

С другой стороны, экзотермические реакции (H<0) самопроизвольно не протекают, если при S<0 │∆H│>T∆S, следовательно G>0. Эндотермические реакции, сопровождающиеся уменьшением энтропии, в принципе невозможны. Протекание экзотермических реакций с увеличением энтропии термодинамически возможно при любых температурах.

Энергия Гиббса является функцией состояния, поэтому изменение энергии Гиббса в результате протекания химической реакции при стандартных условиях вычисляется по формуле

G хр. = G-G, (3)

а при любых других температурах – по уравнению (1).

Пример 1. В каком состоянии энтропия 1 моль вещества больше при одинаковой температуре: в кристаллическом или парообразном?

Решение. Энтропия есть мера неупорядоченности состояния вещества. В кристалле частицы (атомы, ионы) расположены упорядоченно и могут находиться лишь в определенных точках пространства, а для газа таких ограничений нет. Объем 1 моль газа гораздо больше объема 1 моль кристаллического вещества; возможность хаотичного движения молекул газа больше. А так как энтропию можно рассматривать как количественную меру хаотичности атомно-молекулярной структуры вещества, то энтропия 1 моль паров вещества больше энтропии 1 моль его кристаллов при одинаковой температуре.

Пример 2. Прямая или обратная реакция будет протекать при стандартных условиях в системе

СН 4 (г) + СО 2 2СО(г) + 2H 2 (r)

Решение. Вычислим G прямой реакции. Значения G соответствующих веществ приведены в табл. 6. Зная, что G есть функция состояния и что G для простых веществ, находящихся в устойчивых при стандартных условиях агрегатных состояниях, равны нулю, находим G процесса:

G = 2(-137,27) + 2(0) - (-50,79 - 394,38) = + 170,63 кДж.

То, что G > 0, указывает на невозможность самопроизвольного протекания прямой реакции при Т = 298 К и Р = 1,013∙10 5 Па.

Таблица 6. Стандартные энергии Гиббса образования G некоторых веществ

Вещество

Состояние

G,кДж/моль

Вещество

Состояние

G, кДж/моль

Таблица 7. Стандартные абсолютные энтропии S 0 298 некоторых веществ

Вещество

Состояние

S,Дж/(моль. К)

Вещество

Состояние

S,Дж/(моль. К)

Пример З. На основании стандартных теплот образования (табл. 5) и абсолютных стандартных энтропий веществ (табл. 7) вычислите G реакции, протекающей по уравнению

СО(г) + Н 2 О(ж) = СОз(г) + Н 2 (г).

Решение.  G° = H° - TS°; H и S - функции состояния, поэтому

H 0 х.р. = H 0 прод. - H 0 исх. ;

S 0 х. р. = S 0 прод. - S 0 исх. .

H 0 х. р. = (-393,51 + 0) - (-110,52 - 285,84) = +2,85 кДж;

S 0 х. р. = (213,65+130,59) -(197,91+69,94) =+76,39 = 0,07639 кДж/(моль∙К);

G 0 = +2,85 – 298 - 0,07639 = -19,91 кДж.

Пример 4. Реакция восстановления Fе 2 О 3 водородом протекает по уравнению

Fе 2 О 3 (к)+ ЗН 2 (г) = 2Fе(к) + ЗН 2 О(г); H= +96,61 кДж.

Возможна ли эта реакция при стандартных условиях, если изменение энтропии S = 0,1387 кДж/(моль. К)? При какой температуре начнется восстановление Fе 2 Оз?

Решение. Вычисляем G ° реакции:

G =H-TS= 96,61 - 298 . 0,1387 = +55,28 кДж.

Так как G > 0, то реакция при стандартных условиях невозможна; наоборот, при этих условиях идет обратная реакция окисления железа (коррозия). Найдем температуру, при которой G = 0:

H = TS; T=
К.

Следовательно, при температуре Т = 696,5 К (423,5 0 С) начнется реакция восстановления Fе 2 О 3 . Иногда эту температуру называют температурой начала реакции.

Пример 5. Вычислите H 0 , S 0 , G 0 , - реакции, протекающей по уравнению

Fе 2 Оз(к) + З С = 2 Fe + З СО.

Возможна ли реакция восстановления Fе 2 Оз углеродом при 500 и 1000 К?

Решение. H 0 х.р. и S 0 х.р. находим из соотношений (1)и (2):

H 0 х.р. = - [-822.10 + 30]= -331,56 + 822,10 = +490,54 кДж;

S 0 х.р. = (2 ∙ 27,2 +3 ∙·197,91) - (89,96 + 3 ∙ 5,69) = 541,1 Дж / (моль∙К).

Энергию Гиббса при соответствующих температурах находим из соотношения

G 500 = 490,54 – 500 = +219,99 кДж;

∆G 1000 = 490,54 –1000 = -50,56 кДж.

Так как G 500 > 0, а G 1000 < 0, то восстановление Fе 2 Оз возможно при 1000 К и невозможно при 500 К.

Самопроизвольное протекание изобарно-изотермического процесса определяется двумя факторами: энтальпийным, связанным с уменьшением энтальпии системы (ΔH), и энтропийным T ΔS, обусловленным увеличением беспорядка в системе вследствие роста ее энтропии. Разность этих термодинамических факторов является функцией состояния системы, называемой изобарно-изотермическим потенциалом или свободной энергией Гиббса (G, кДж): ΔG = ΔH – T ΔS

При ΔG < 0 реакция термодинамически разрешена и система стремится к достижению условия ΔG = 0, при котором наступает равновесное состояние обратимого процесса; ΔG > 0 указывает на то, что процесс термодинамически запрещен.

· Если ΔH < 0 и ΔS > 0, то всегда ΔG < 0 и реакция возможна при любой температуре.

· Если ΔH > 0 и ΔS < 0, то всегда ΔG > 0, и реакция с поглощением теплоты и уменьшением энтропии невозможна ни при каких условиях.

· В остальных случаях (ΔH < 0, ΔS < 0 и ΔH > 0, ΔS > 0) знак ΔG зависит от соотношения ΔH и TΔS. Реакция возможна, если она сопровождается уменьшением изобарного потенциала; при комнатной температуре, когда значение T невелико, значение TΔS также невелико, и обычно изменение энтальпии больше TΔS. Поэтому большинство реакций, протекающих при комнатной температуре, экзотермичны. Чем выше температура, тем больше TΔS, и даже эндотермические реакции становятся осуществляемыми.

17. Влияние температуры . В каждой обратимой реакции одно из направлений отвечает экзотермическому процессу, а другое - эндотермическому.

Прямая реакция - экзотермическая, а обратная реакция - эндотермическая. Влияние изменения температуры на положение химического равновесия подчиняется следующим правилам:

При повышении температуры химическое равновесие смещается в направлении эндотермической реакции, при понижении температуры - в направлении экзотермической реакции.

18. Различают гомогенные и гетерогенные системы. Гомогенной называется система, состоящая из одной фазы. Гетерогенной - система, состоящая из нескольких фаз. Фазой называется часть системы, отделенная от других ее частей поверхностью раздела, при переходе через которую свойства системы изменяются скачком.

Скорость гомогенной реакции определяется количеством вещества, вступающего в реакцию или образующегося при реакции за единицу времени в единице объёма системы.

Скорость гетерогенной реакции определяется количеством вещества, вступающего в реакцию или образующегося при реакции за единицу времени на единице поверхности фазы.

Константа скорости реакции k зависит от природы реагирующих веществ и от температуры, но не зависит от их концентрации.

Скорость реакции принимается всегда положительной, поэтому производная исходных концентраций берется со знаком минус, а продуктов реакции – со знаком плюс.

Порядок реакции. Порядок реакции - это эмпирическая величина, равная сумме показателей степеней, с которыми концентрации реагентов входят в выражение для скорости реакции.

Реакции первого порядка. Если скорость реакции зависит от концентрации только одного реагента в первой степени, то выражение для скорости принимает вид

О такой реакции говорят, что она является реакцией первого порядка.

Одним из изменении скорости реакции является катализатор. Катализатор изменяет путь по которому протекает суммарная реакция. Увеличение скорости связано с уменьшением энергии Гиббса.

Из этих трех стадий самая медленная - первая. Поэтому именно она определяет скорость всей реакции (является лимитирующей стадией).

Если лимитирующую стадию нельзя четко выделить, то порядки реакций могут получиться дробными или отрицательными.

Состоит из 3 стадий:

1)поверх кислорода углерода

2)химические реакция на поверх углерода

3)отвод продуктов

Все 3 стадия проходят с разными скоростями.

Энергия данной стадии не большая. данный процесс опред.ся переносом вещества(кислорода к поверхности углерода). И скорость данного процесса опред.ся стадией переноса вещества.

Стадия опред.ся скоростью протекания химический реакции и наз.ся лимитирующей стадией.

При постоянной температуре скорость химическойреакции пропорциональна произведению хим.реакции реагирующих веществ.

19 .Обратимым процессом называется равновесный процесс, который в прямом и обратном направлениях протекает через одни и те же промежуточные состояния, а сама система возвращается в исходное состояние.

Необратимым называется процесс, который нельзя провести в противоположном направлении через все те же самые промежуточные состояния. Все реальные процессы необратимы. Примеры необратимых процессов: диффузия, термодиффузия, теплопроводность, вязкое течение и др. Переход кинетической энергии макроскопического движения через трение в теплоту, то есть во внутреннюю энергию системы, является необратимым процессом.

Многие процессы протекают в прямом и обратимом состоянии. При прямом способствует дельта Н.

В определенный момент времени оба фактора уравновешиваются, и наступает момент химического равновесия.

В равновесной системе протекает одновременно исходные вещества и продукты.

Константа химического равновесия. Еслиреакции гомогенные:

2NO 2(г)+О 2(г) =2NО 3(г)

V 1 =k 1 2

V 2 =k 2 2 v 1 /v 2 =k c -константа равновесия k 1 2 = k 2 2 k 1 / k 2 = k c

20. .Принцип Ла Шателье: если находящаяся в равновесии система подвергается внешнему воздействию, равновесие смещается в таком направлении, которое способствует ослаблению этого воздействия. При повышении температуры химическое равновесие смещается в направлении эндотермической реакции, при понижении температуры - в направлении экзотермической реакции. При повышении давления равновесие сдвигается в направлении, в котором уменьшается суммарное количество молей газов и наоборот. При повышении концентрации одного из исходных веществ равновесие сдвигается в направлении образования продуктов реакции. При повышении концентрац ии одного из продуктов реакции равновесие сдвигается в направлении образования исходных веществ.

4Cl(г)+О2(г)=2Сд2(г)+2Н2О(ж) ∆H>0

Равновесие системы сдвигается в сторону продуктов при: понижении температуры, при повышении давления, при повышении концентрации исходных продуктов.

21. В основном реакции в природе происходят в растворах, которые имеют различный состав и структуру. Растворы являются особым видом смесей химических веществ. Основные признаки растворов – это однородность и устойчивость во времени.

Истинные растворы – гомогенные, термодинамические, устойчивые системы, которые состоят из растворённого вещества и растворителя, а также продуктов их взаимодействия. Раствор всегда состоит из 2-х и более компонентов.

Растворитель – это компонент, фазовое состояние которого не изменяется при растворении. Основной растворитель – это вода.

По отношению к воде различают гидрофильные и гидрофобные вещества.

По агрегатному состоянию растворы классифицируются на:

газообразные;

жидкие;

твёрдые .

По качественному составу растворы подразделяются на:

концентрированные , разбавленные;

насыщенные (равновесные, термодинамические, малоустойчивые системы, характеризующиеся максимальным (предельным) растворением вещества без образования осадка);

перенасыщенные (растворённое вещество выпадает в осадок);

ненасыщенные (вещество ещё может раствориться).

диффузия – это самопроизвольный процесс переноса частиц растворенного вещества и растворителя по градиенту концентрации растворенного вещества, приводящий к выравниванию концентраций частиц и их скоростей.

Причина: стремление системы к максимальной энтропии. Несмотря на хаотический характер теплового движения частиц в системе, диффузия частиц как результат этого движения всегда направлена от большей концентрации к меньшей. Направленный характер диффузия имеет до тех пор, пока есть различия в концентрации частиц в отдельных частях системы. После выравнивания концентрации частиц происходит выравнивание и скоростей их диффузии в разных направлениях.

Количество вещества, переносимого за счет диффузии через единичную площадь поверхности в единицу времени, называется скоростью диффузии. Скорость диффузии прямо пропорциональна температуре и разности концентраций по обе стороны поверхности, через которую осуществляется диффузия. В то же время скорость диффузии обратно пропорциональна вязкости среды и размеру частиц.

Осмотическим давлением (π) называют избыточное гидростатическое давление, возникающее в результате осмоса и приводящее к выравниванию скоростей взаимного проникновения молекул растворителя сквозь мембрану с избирательной проницаемостью.

При осмосе молекулы растворителя преимущественно движутся через мембрану в том направлении, где концентрация частиц вещества больше, а концентрация растворителя меньше. Другими словами, в результате осмоса происходит всасывание растворителя в ту часть системы, где концентрация частиц вещества больше. Если осмотическое давление у растворов одинаковое, то они называются изотоническими и между ними происходит подлинно равновесный обмен растворителем. В случае контакта двух растворов с разным осмотическим давлением гипертоническим раствором называется тот, у которого осмотическое давление больше, а гипотоническим – раствор с меньшим осмотическим давлением. Гипертонический раствор всасывает растворитель из гипотонического раствора, стремясь выровнять концентрации вещества путем перераспределения растворителя между контактирующими растворами.

Давление пара, при котором в условиях определенной температуры наступает динамическое равновесие, характеризующееся равенством скоростей испарения и конденсации жидкости, называется давлением насыщенного пара.

относительное понижение давления пара растворителя над раствором равно мольной доле растворенного вещества, т.е. отношению количества молей растворенного вещества к суммарному количеству молей растворенного вещества и растворителя (I закон Рауля)

22 .Кипения раствора одного моля вещества в 1000 г растворителя, и часто называется молекулярным повышением температуры кипения. В действительности же уравнение перестает быть правильным при высоких концентрациях растворенных веществ, поскольку в основу этого уравнения положены приближения разбавленных растворов.

Жидкость закипает при температуре, при которой давление насыщенного пара жидкости становится равным внешнему давлению. Так как давление насыщенного пара растворов нелетучих или малолетучих веществ меньше давления насыщенного пара растворителя, то эти растворы кипят при более высокой температуре, чем растворитель. Для разбавленных растворов таких веществ Рауль установил, что повышение температуры кипения раствора Δtк. = t - t0 пропорционально его моляльности:

Δtк. = Е · m

Жидкость замерзает при той температуре, при которой давление насыщенного пара над ней такое же, как и над кристаллами этого вещества. Так как давление насыщенного пара растворителя над раствором всегда меньше, чем над чистым растворителем, то разбавленный раствор будет замерзать при более низкой температуре, чем растворитель. Температурой замерзания раствора считают ту температуру, при которой в процессе охлаждения начинают выделяться первые кристаллы чистого растворителя. Для таких растворов Рауль нашел, что понижение температуры замерзания раствора Δtз. = t0 - t (t0 - температура замерзания растворителя, t - температура замерзания раствора) пропорционально его моляльности (1 моль в 1000 г растворителя):

Δtз = К · m,

23 .Электролитами называются вещества, диссоциирующие в воде, других полярных жидкостях или расплавах на ионы и способные проводить электрический ток. Распад вещества на ионы называется электролитической диссоциацией. Перенос тока в растворах и расплавах осуществляется ионами, поэтому их в отличие от электронных проводников называют ионными проводниками или проводниками второго рода. К электролитам относят соли, кислоты, основания.

Особенности растворов электролитов. Растворы электролитов, кроме способности проводить электрический ток имеют и другие особенности. В частности, в растворах электролитов наблюдаются отклонения от законов Рауля и Вант-Гоффа

РАСТВОРЫ ЭЛЕКТРОЛИТОВ, содержат в заметных концентрациях ионы-катионы и анионы, образующиеся в результате электролитической диссоциации молекул растворенного вещества. Растворитель (чистый или смешанный) обычно в сколько-нибудь значительной степени не диссоциирован. РАСТВОРЫ ЭЛЕКТРОЛИТОВ э. обладают способностью проводить электрич. ток и относятся к проводникам второго рода. Благодаря увеличению общего числа частиц коллигативные свойства бесконечно разбавленных РАСТВОРЫ ЭЛЕКТРОЛИТОВ э. (т. е. свойства, зависящие только от концентрации растворенного вещества, но не от его природы) существенно отличаются от тех же свойств растворов не электролитов. Этим, в частности, объясняется увеличение осмотич. давления в сравнении со значением, предсказываемым законом Вант-Гоффа (см. Осмос), понижение давления пара растворителя над раствором в сравнении с предсказываемым Рауля законом и др. Наличием ионов обусловлены также классификация РАСТВОРЫ ЭЛЕКТРОЛИТОВэ., особенности теоретич. подходов в сравнении с другими классами растворов. Наиб. изучены водные РАСТВОРЫ ЭЛЕКТРОЛИТОВэ., играющие важную роль во многих биологическое, геол. и техн. процессах. Неводные РАСТВОРЫ ЭЛЕКТРОЛИТОВэ. служат средой для проведения синтеза и электрохимический процессов, используются в современной технологиях (создание новых химических источников тока, солнечных батарей, процессы разделения веществ и др.).

Изотонический коэффициент для растворов электролитов всегда больше единицы, причем с разбавлением раствора i возрастает до некоторого целочисленного значения.

Для объяснения особенностей свойств растворов электролитов С.Аррениус предложил теорию электролитической диссоциации, основывающуюся на следующих постулатах:

1.Электролиты в растворах распадаются на ионы – диссоциируют;

2. Диссоциация является обратимым равновесным процессом;

3. Силы взаимодействия ионов с молекулами растворителя и друг с другом малы (т.е. растворы являются идеальными). Диссоциация электролитов в растворе происходит под действием полярных молекул растворителя; наличие ионов в растворе предопределяет его электропроводность. Для оценки полноты диссоциации в теории электролитической диссоциации вводится понятие степень диссоциации α, которая равна отношению числа молекул n, распавшихся на ионы, к общему числу молекул N:альфа=n\N

24 . СИЛЬНЫЕ И СЛАБЫЕ ЭЛЕКТРОЛИТЫ

К сильным электролитам условно относят вещества, кажущаяся степень диссоциации которых в растворе превышает 30% (a > 0,3). При a < 3% (a < 0,03) электролиты считают слабыми, в других случаях о них говорят как об электролитах средней силы.

Силу электролитов количественно характеризуют степенью диссоциации. Степень диссоциации (a) - это отношение числа распавшихся на ионы молекул (Nдис.) к общему числу молекул растворенного вещества (Nобщ.):

Степень диссоциации выражают в долях единицы или в процентах. Поскольку общее число молекул вещества в растворе пропорционально количеству его вещества и его молярной концентрации.

Электролиты, у которых a = 1, относят к сильным, у слабых электролитов a < 1.

Степень диссоциации обычно определяют по данным измерения электропроводности растворов, которая прямо пропорциональна концентрации свободно движущихся ионов. При этом получают не истинные a , а кажущиеся значения. Они всегда меньше истинных значений a , т.к. ионы при движении к электродам сталкиваются и частично уменьшают свою подвижность, особенно при высокой их концентрации в растворе, когда возникает электростатическое притяжение между ионами. Например, истинное значение степени электролитической диссоциации HCl в разбавленном растворе равно 1, в 1 М растворе a = 0,78 (78%) при 18 ° С, однако, в этом растворе не содержится 22% недиссоциированных молекул HCl, практически все молекулы диссоциированы.

Электролиты, которые в разбавленном водном растворе диссоциируют практически полностью, называют сильными электролитами.

К сильным электролитам в водных растворах принадлежат почти все соли, многие неорганические кислоты (H2SO4, HNO3, HClO4, галогеноводородные, кроме HF и др.), гидроксиды s-элементов (исключение - Be(OH)2 и Mg(OH)2). Кажущиеся значения a этих электролитов находятся в пределах от 70 до 100%. Диссоциация сильных электролитов - это практически необратимый процесс.

Электролиты, которые в разбавленном водном растворе диссоциируют частично, называют слабыми. Диссоциация слабых электролитов - обратимый процесс.

Диссоциация слабых электролитов - обратимый процесс. Для диссоциации слабого бинарного электролита KA:

на основании закона действия масс справедливо соотношение:

Константу равновесия в данном случае называют константой диссоциации (константой ионизации). Как и любая константа равновесия, константа диссоциации зависит от природы диссоциирующего вещества и растворителя, температуры и не зависит от концентрации раствора.

Константа диссоциации - важная характеристика слабых электролитов. Чем меньше величина Kд, тем слабее диссоциирует электролит в данном растворителе.

Kд связана с a простой зависимостью. Если общую молярную концентрацию электролита в растворе обозначить СКА, то для бинарных электролитов концентрации ионов Ky+ и Ax- будут равны a·CKA . Очевидно, что

A·CKA ,

CKA - a·CKA = CKA·(1-a),

Полученная зависимость является математическим выражением закона разбавления Оствальда (1888 г.): степень диссоциации слабого электролита увеличивается при разбавлении раствора обратно пропорционально корню квадратному из его молярной концентрации.

25. константа автопротолиза воды, водородный показатель.

Вода относится к слабым электролитам.Уравнения сомореализации имеет след.вид:

Н2О+Н2О=Н3О(+) +ОН(+) к=\=1,8*10(-16)

Н2О=Н(+) +ОН(-)

Поскольку степень диссацияция воды мала,то концентрация недиссацияции молекул воды= общей концентрации.

Если концентрация протонов водорода больше.

pH=7-нейтральный

рН>7щелочной